Wall formwork comes in different types and classifications, as outlined below.
You will get efficient and thoughtful service from Trico.
Conventional
Conventional wall formwork consists of boards or sheets and squared timber. It is flexible, but it can be costly and time-consuming as each component must be assembled on-site. In addition, all of its parts should be made according to the projects specifications, and they must be nailed together and dismantled again after concreting.
Girder
This is a better version of the conventional formwork. Its components, which usually consist of dimensionally stable girders with two chords and one web, have been standardized to facilitate the assembly of identical and ready-to-use panels. The connection of the panels has also been systematized.
Frame
This type of wall formwork helps reduce labor time since its essential components (forming face, support for forming face, and steel walers) are assembled as one panel. The profile nose of the frames protects the edges of the forming face, thereby extending its lifespan. Connecting devices are used when assembling the frame panels to large-sized units, which are then usually transported by crane.
Crane-independent (hand-set)
This type of formwork can be moved by hand. Because of weight considerations, it is usually made of aluminum or plastic. It can take less concrete pressure than crane-dependent formwork, and is often used in housing and municipal construction projects.
Crane-dependent
Crane-dependent formwork systems feature a large frame and formwork panels, usually made of steel. As a result, they cannot be moved manually. Since they can resist more fresh concrete pressures than crane-independent forms, they are suitable for the construction of commercial buildings and other extensive infrastructure projects.
Two-sided
As the name implies, two-sided formwork is erected on both sides of the wall. Its formwork ties, which are usually sleeved by spacing plastic tubes so they can be reused, take up the fresh concrete pressure. Push-pull props or large heavy-duty braces are attached to the formwork to align and secure it against wind loads during operation.
Single-sided
Single-sided formwork is used when the concrete has to be poured against existing structures or when builders need to do concreting against a hill or soil. This is why it is most suitable for reconstruction jobs. With this type of formwork system, concrete pressure is transferred from the formwork to the base plates through a support structure.
Prefabricated
This formwork consists of two prefabricated concrete panels which are assembled in advance, and then transported and filled with concrete on-site. Braces and push-pull props are often used to secure the walls, while working and safety scaffolds are installed with the help of special adapters to make the construction process more cost-effective. Prefabricated formwork helps minimize project duration and labor costs. However, pre-planning is required to ensure that it is transported safely to the site.
Circular
Circular formwork is designed for the construction of curved and polygonal walls. It is also quite useful in the construction of specific concrete structures, such as septic tanks and car park ramps. This formwork system comes in three different types:
Climbing
Climbing formwork is quite useful in the construction of high-rise concrete structures, such as control towers and skyscrapers, because it climbs with the wall. It comprises large wall formwork mounted to a climbing scaffold. There are three different types of climbing formwork:
MEVA is an industry leader offering a wide variety of wall formwork systems that provide highly efficient shuttering, flexibility, and reliability. Our products are lightweight and easy to assemble, and therefore will facilitate the rapid completion of your construction projects. Click here to learn more.
Formwork is a concrete construction that is used as either short or permanent molds into which fresh concrete or similar kind of materials are gushed to make it harden. The different types of concrete formwork construction depend on the material and the kind of structural element. They are given various names as per the type of structural member construction like slab framework, beam framework, column framework etc. to use in beams and columns.
The harden process requires time and includes an expenditure up to 20 to 25% of the cost of the structure or more than that; the temporary design structures are made of economic expenditure.
While the removing process of the framework is known as stripping that can also be used later; the unusable are called panel forms and the non-useable are called stationary forms. The most commonly used material for formwork is Timber.
This article is a short knowledge for people about formwork, the different types of formwork and the basic needs to complete a formwork properly. Formwork comes in several types such as:
If you want to learn more, please visit our website plastic shuttering.
1. Traditional timber framework
2. Engineering Formwork System
3. Re-usable plastic formwork
4. Permanent Insulated Formwork systems
5. Stay-In-Place structural formwork systems
6. Flexible formwork
Requirements of Formwork: It is stated above that framework varies as per material and material is the main ingredient for every framework, but for any kind of chosen material the three common principles of quality, safety and economy should be the same. While the quality of material ensures safety and also considerably helps to achieve the economy; any kind of failure in framework can cause of the loss of life and tragic financial loss. To avoid the loss the following guidelines should be followed from start to framing materials and for the associated components:
1. Strength: The strength of material must be sufficient to strong the forces expected and this is the important for both the structural design and safety aspect.
2. Stiffness: the structural movement under load should be small and sure; these deformities and separations are the necessary part of the whole deviations in the formed concrete surface. While planning the formwork system, a designer must take decisions upon the total acceptable variations and the extend workmanship errors and structural deformity. The material stiffness and the workmanship accuracy must be stable to ensure the stability of the total deviations to keep the tolerances.
3. Impact Resistance: The forms are made to make sure that the damaged form that is useless does not make falling debris and to make sure this important safety quality, materials displaying ductile failure are far above than those fail in a hasty and brittle manner.
4. Durability: The framework must be durable either it will affect the economy and the achievement quality concrete product at every reuse of the formwork; formwork is always pre made and used out in the open. When the matter of re-uses came the thing is dependable on its reaction of materials and components with weather and the framing, components and formface materials should be strong in any environment. Material durability is important for both the achievement of good quality concrete surface finishes and safe formwork structures.
5. Weight: While the assembling process in formwork, both the members and components are shifted into position by hand that will be applicable after the complete framework which are heavy and need a crane to do the shifting work. So the framing members, formwork components and formface materials must be keep in size so that they must be carried and lifted by the worker or the crane etc.
6. Accuracy: Every construction process is dependable on a lot of money so the work of lifting and cutting of materials must be done within a minimum amount of money and consistency of size of materials, plywood sheets and framing members is very important.
7. Compatibility: The framework materials should be fitted with either the fluid concrete or the strong concrete and at the formface, the elements of the form materials must not react with the wet cement or concrete.
8. Insulation: Some materials react with the environment if its become extra hot or cold, so the protection for the materials is must; if the mix becomes frozen and the chemical bondage damages then the concrete has to be placed at low temperatures, heat the mixing water etc. The placing of the fluid concrete for all forms can cause some damage with the crushed rock aggregate and the proper steps has to be taken to stop it.
Read more
Want more information on metal prop? Feel free to contact us.