Pressure tests are a non-destructive way to guarantee the integrity of equipment such as pressure vessels, pipelines, plumbing lines, gas cylinders, boilers and fuel tanks. It is required by the piping codes to confirm that a piping system is able to bear its rated pressure and it has no leaks. Pressure testing, also called hydrostatic testing, is carried out after the cooling or heating installation of any pipeline and before it is put into use.
If you want to learn more, please visit our website pressure test unit.
By performing a pressure test we find a reliable method for testing all types of pipework, including the ones in district cooling or district heating systems. This type of analysis, besides guaranteeing the right functioning, will also allow us to detect if there are leaks in a specific pipe so that reparations can be made.
The most widely used code for pressure and leak test is the ASME B31 Pressure Piping Code. Among its several sections, the requirements and procedures listed in the codes below are followed by Araner:
Pressure tests may be done either with liquid, usually water (hydrostatic), or with gas, usually dry nitrogen (pneumatic).
It may interest you: Industrial refrigeration: everything you always wanted to know
Isolation of equipment and piping not subjected to pressure test: Equipment that is not to be subjected to the pressure test shall be either disconnected from the system or isolated by a blank or similar means.
Figure 1: Isolation of piping
The hydrostatic test pressure at any point in the piping system shall not be less than 1.5 times the design pressure, but shall not exceed the maximum allowable test pressure of any non-isolated component, nor shall it exceed the limits of calculated stresses due to occasional loads.
The test pressure shall be not less than 1.5 times the design pressure. When the design temperature is greater than the test temperature, the minimum pressure shall be calculated by eq. P T = 1,5P S T/S , where =allowable stress at test temperature, S=allowable stress at component design temperature, P=design gage pressure. The test pressure may be reduced to the maximum pressure that will not exceed the lower of the yield strength or 1.5 times the component ratings at test temperature. The pressure shall be continuously maintained for a minimum time of 10 minutes and may then be reduced to the design pressure and held for such time as may be necessary to conduct the examinations for leakage. Examinations for leakage shall be made of all joints and connections.
The pneumatic test pressure shall not be less than 1.2 nor more than 1.5 times the design pressure of the piping system. It shall not exceed the maximum allowable test pressure of any non-isolated component. The pressure in the system shall gradually be increased to not more than 1/2 of the test pressure, after which the pressure shall be increased in steps of approximately 1/10 of the test pressure until the required test pressure is reached. The pressure shall be continuously maintained for a minimum time of 10 min. It shall then be reduced to the lower of design pressure or 100 psig [700 kPa (gage)] and held for such time as may be necessary to conduct the examination for leakage. Examination for leakage by soap bubble or equivalent method shall be made of all joints and connections.
Contact us to discuss your requirements of hydro test chart recorder. Our experienced sales team can help you identify the options that best suit your needs.
The test pressure shall not be less than 1.1 times the design pressure and shall not exceed the lower of 1.33 times the design pressure or the pressure that would produce a nominal pressure stress or longitudinal stress in excess of 90 % of the yield stress of any component at the test temperature. The pressure shall be increased until a gage pressure, which is the lower of 0.5 times the test pressure or 170 kPa (25 psi), at which time a preliminary check shall be made. Thereafter, the pressure shall be gradually increased in steps until the pressure is reached, holding the pressure at each step until the piping strains are equalized. The pressure shall then be reduced to the design pressure before examining for leakage. During the test, a pressure relief device shall be provided, having a set pressure not higher than the test pressure plus the lower of 345 kPa (50 psi) or 10% of the test pressure.
It might interest you: Industrial refrigeration maintenance: best performance
The test pressure shall be at least 1.1 and shall not exceed 1.3 times the design pressure of any component in the system. The pressure in the system shall be gradually increased to 0.5 times the test pressure, after which the pressure shall be increased in steps of approximately 1/10 of the test pressure until the required test pressure is reached. The test pressure shall be maintained for at least 10 minutes. It may then be reduced to the design pressure and conduct the examination for leakage. During the test, a pressure relief device shall be provided, having a set pressure above the test pressure, but low enough to prevent permanent deformation of any of the system components.
Working with a company that specializes in heating and cooling services, maintenance and testing is often more beneficial than integrating dedicated personnel inhouse, reducing cost, time, and resources.
Other benefits of outsourcing a pressure test include:
Discover: Benefits of District Energy: advantages of heating Heating & Cooling District
Pressure tests carried out according to the asme procedure allow us to guarantee the correct performance of the system and to detect that there are no leaks and that the installation is robust.
That is why it is important to consider specialised district energy contractors such as Araner. It is essential to work with top-notch, quality-oriented professionals to ensure the safety of the plant.
We are experts in designing, manufacturing and installing tailor-made industrial cooling solutions with a positive economic impact. We have worked worldwide in the development of Turbine Inlet Air Cooling, District Cooling and Thermal Energy Storage. Get in touch with our experts if you are interested in any of our solutions or if you need technical advice. We will be glad to help!
So, I thought my heater core was leaking. I would occasionally get a wiff of something nasty. Ive smelled it before when my heater core went out in an old Toyota i had. My dash was also making a bubbling noise.
Pressure test held for an hour so I thought the heater core was fine.I released the pressure from the tester and got a wiff of that nasty heater core stink. My coolant not under pressure smells like new coolant. Is there a known phenomenon about coolant smelling different when sprayed out from pressure? It’s kind of fishy
I’m bypassing the core to see if the smell goes away.
Want more information on hydraulic pump test bench price? Feel free to contact us.
co2 gas pump hydraulic test machine oil free compressor manufacturer oil free compressor suppliers air dryer types refrigerated heat compressor machine air compressor manufacturer in china high pressure booster used hydraulic test stand for sale pressure test unit heat recovery from air compressors Vane Compressor Maintenance Kit high pressure argon compressors manufacturers chinese compact air compressor factory pressure relief valve test bench air compressor manufacturer in china